Emma Rothero Floodplain Meadows Partnership Manager School of Environment, Earth & Ecosystem Sciences The Open University # Using evidence from floodplain ecosystems to re-consider land use and management Emma Rothero, Clare Lawson, David Gowing, Ann Skinner #### Natural capital of floodplain land uses - 1. Stock of different land uses in English and Welsh floodplains (how much is there?) - 2. What benefits do we get from different land uses - 3. Value of benefits (some examples of £££ valuation) - 4. Evidence gaps - 5. Key messages ## The extent (km²) of different land uses within the floodplain (Flood zone 2). | Land Use | England* | | Wales# | | Total | | |-------------------------------------|----------|---------|--------|---------|--------|---------| | | extent | % cover | extent | % cover | extent | % cover | | Arable and Horticulture | 2350 | 35.6 | 114 | 9.3 | 2464 | 31.5 | | Improved Grassland | 2200 | 33.3 | 613 | 49.9 | 2813 | 35.9 | | Broadleaved, mixed and yew woodland | 450 | 6.8 | 130 | 10.6 | 580 | 7.4 | | Coniferous woodland | 30 | 0.5 | 12 | 1.0 | 42 | 0.5 | | Neutral Grassland | 200 | 3.0 | 19 | 1.6 | 219 | 2.8 | | Fen, Marsh and Swamp | 20 | 0.3 | 25 | 2.0 | 45 | 0.6 | | Urban & suburban | 650 | 9.8 | 98 | 8.0 | 748 | 9.6 | | Total floodplain | 6600 | | 1229 | | 7829 | | Land use categories are from the CEH Land Cover Map 2015. ^{*} Data from England is based on 2007 data, from Heritage & Entwistle, 2017. # Data from Wales, unpublished data, Floodplain Meadow Partnership. - Floodplains naturally cover over 1.6 million hectares in England and Wales - BUT 42% of floodplains are no longer connected to the river system (Maltby et al., 2011) - **AND** the level of connectivity between rivers and their floodplain varies considerably between rivers (Heritage *et al.*, 2016). Maltby E., Ormerod S., Acreman, M., Blackwell, M., Durance, I., Everard, M., Morris, J. & Spray, C. (2011). Freshwater – Openwaters, Wetlands and Floodplains. In: The UK National Ecosystem Assessment, UNEP-WCMC, Cambridge. Heritage, G., Entwistle, NS. & Bently S., (2016). Floodplains: the forgotten and abused component of the fluvial system. 3rd European Conference on Flood Risk Management. E3S Web Conferences 7, 13007. The variety of ecosystem services supplied by different land uses on floodplains | Ecosystem | Description of environmental or social goods and services | | Land Use | | | | | | |--|---|---|-----------------------|-------------------------|------------------------|-----------------------|-------------------------|--| | services
provided by
floodplains | | | Improved
Grassland | Broadleaved
Woodland | Coniferous
Woodland | Neutral
Grasslands | Fen, Marsh
and Swamp | | | Food | Agriculture; crop and livestock production | + | + | | | + | | | | Fibre | Timber production, reeds & osiers | | | + | + | | + | | | Climate
Regulation | Carbon sequestration and storage | - | | + | + | + | + | | | Pollination | Habitat for pollinating insects | | | + | | + | + | | | Water quality | Sediment trapping | | + | + | + | + | + | | | Natural Hazard
Regulation | Flood storage | + | + | + | + | + | | | | Biodiversity | Species-rich habitats – high diversity and rare species | | | + | | + | + | | | Nutrient cycling | Nutrient Management | - | | + | | + | | | | Soil formation | Soil development | | | + | | + | + | | | Cultural history | Strong 'sense of place' and social history | | | + | | + | + | | | Aesthetic | Enhancement of the landscape, intrinsic appeal | | | + | | + | + | | | Recreation | Enjoyment of the outdoors | + | + | + | + | + | + | | Extent of delivery of different services is dependent on extent of land use ### Chimney Meadows NNR (Oxfordshire): from commercial farm (BAU) to extensively managed nature reserve (ASP)* ^{*}Hölzinger, O. & Haysom, K.A., (2017) Chimney Meadows Ecosystem Services Assessment. BBOWT, Oxford ^{**}Brander, L. M., A. Ghermandi, O. Kuik, A. Markandya, P. Nunes, M. Schaafsma, and A. Wagtendonk. 2008. Scaling up ecosystem services values - methodology, applicability and a case study. | Benefit provided by floodplain | Description of the service delivering the benefit | North Meadow quantities | Value per unit | North Meadow
total value | | |--------------------------------|---|--|--|-----------------------------|--| | Food | Agriculture; crop and livestock production Hay values | Hay yield
4 t ha ⁻¹ yr ⁻¹ | Gross margin = £40/t | £6,216 | | | | Grazing land value | 0.4 LU ha ⁻¹ | £2.50 LU ⁻¹ week ⁻¹ | £375 | | | Climate Regulation | Carbon sequestration (t/c/ha/yr) | Variable with season. Hay yield
4 t ha ⁻¹ yr ⁻¹ ; Carbon content of 47.5%
= 1.9 t C ha ⁻¹ yr ⁻¹ = 7.0 t CO ₂ e ha ⁻¹ | £66 tCO ₂ e ⁻¹ (DECC non-
traded carbon price,
2018)
£459.80 ha ⁻¹ | £20,415 | | | Climate Regulation | Carbon storage below ground (soil, t C ha ⁻¹) | Soil carbon = 109.4 t ha ⁻¹
=4857.4 t C top 10 cm | No equivalent £ values | Not known | | | | Carbon storage (above ground t C ha ⁻¹ | Variable with season, no long-term store | | £0 | | | Pollination | Habitat for pollinating insects | 44.4 ha | £29.14 ha ⁻¹ | £1,294 | | | Water quality | Sediment trapping | 0.8 m³ ha ⁻¹ | £13.83 m ⁻³ | £491 | | | Air quality | Removal of atmospheric pollutants | No data | | | | | Natural Hazard
Regulation | Flood storage (above ground) | 44.4 ha | £197 | £8,746 | | | Biodiversity | Species-rich habitats – high diversity and rare species. | 44.4 ha | £499 ha ⁻¹ | £22,156 | | | Cultural history | Strong 'sense of place' and social history | 44.4 ha of historic landscape | £203.4 ha ⁻¹ | £9,013 | | | Aesthetic | Enhancement of the landscape, intrinsic appeal | No data | | | | | Recreation | Enjoyment of the outdoors | 15,000 visitors yr ¹ | £500 ha ⁻¹ yr ^{-1.} | £22,200 | | | Health | | 2 km of path with 50 m wide buffer
either side = 20 ha | £433 ha ⁻¹ | £8,660 | | Broads Authority Sediment Management Strategy, 2007 Figure from Holzinger and Haysom, 2017, adapted from Christie *et al*, 2011 | 3 | OW/ | | 1 | Y | MARKE | |----|--------------|--|---|---|-------| | Y. | 9 / 6 | | | V | | | | Management options for floodplain grasslands to maximise benefits | | | | | | |---|---|---|--|---|--|--| | Description of environmental or social goods and services | Supply of surplus nutrient via artificial fertilizers | Drainage designed to relieve waterlogging within three days | Sufficient stocking to maintain year round sward height below 5 cm | Harvesting hay at peak-protein (typically mid-June to first week of July) | | | | Agriculture; crop and livestock production | ↑ | ↑ | ↑ | ↑ | | | | Carbon sequestration and storage | 4 | ↑ | 4 | ↑ | | | | Habitat for pollinating insects | ↓ | ↑ | • | ↑ | | | | Sediment trapping | - | ↑ | ↓ | ↑ | | | | Flood storage | - | ↑ | - | - | | | | Species richness | ↓ | ↑ | ↓ | ↑ | | | | Nutrient capture | ↓ | ↑ | ↓ | ↑ | | | | Soil development | ↓ | ↑ | ↓ | ↑ | | | | Strong 'sense of place' and social history | - | ↑ | 4 | ↑ | | | | Enhancement of the landscape, intrinsic appeal | 4 | ↑ | 4 | 1 | | | | Enjoyment of the outdoors; health and well-being | <u>-</u> | ↑ | • | ↑ | | | #### **Evidence gaps** - Flood reduction (above ground and below ground) for different land use types (but PhD) - Soil structure and water storage/aquifer recharge in floodplain soils - Soil carbon processes - Value of soil carbon storage (large in extensive grassland systems, but no valuation method) ## Key Messages Floodplains are special environments in terms of the variety and extent of services they offer – their uniqueness needs to be reflected in ELMS and other policies. A natural-capital perspective can be used to inform and compare land-use decisions. Enormous potential to increase the extent of floodplain habitats that can provide us with multiple benefits – reconnecting rivers and floodplains, restoring semi-natural habitats There are data gaps, but these should not stop us making the case to reconnect rivers and floodplains ## in reem hom on on #### **Contact details** emma.rothero@open.ac.uk clare.lawson@open.ac.uk #### Website www.floodplainmeadows.org.uk @floodplainmead